
1

A Geometric Approach to Confidence Sets for Ratios:

Fieller’s Theorem, Generalizations, and Bootstrap

Ulrike von Luxburg and Volker H. Franz

Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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Abstract: We present a geometric method to determine confidence sets for the ratio

E(Y )/E(X) of the means of random variables X and Y . This method reduces

the problem of constructing confidence sets for the ratio of two random variables

to the problem of constructing confidence sets for the means of one-dimensional

random variables. It is valid in a large variety of circumstances. In the case of

normally distributed random variables, the so constructed confidence sets coincide

with the standard Fieller confidence sets. Generalizations of our construction lead

to definitions of exact and conservative confidence sets for very general classes of

distributions, provided the joint expectation of (X, Y ) exists and the linear combi-

nations of the form aX+bY are well-behaved. Finally, our geometric method allows

to derive a very simple bootstrap approach for constructing conservative confidence

sets for ratios which perform favorably in certain situations, in particular in the

asymmetric heavy-tailed regime.

1. Introduction

In many practical applications we encounter the problem of estimating the ratio

of two random variables X and Y . This could, for example, be the case if we want
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to know how large one quantity is relative to the other, or if we want to estimate

at which position a regression line intersects the abscissa (e.g., Miller (1986);

Buonaccorsi (2001); see also Franz (submitted) for many references to practical

studies involving ratios). While it is straightforward to construct an estimator

for E(Y )/E(X) by dividing the two sample means of X and Y , it is not obvi-

ous how confidence regions for this estimator can be defined. In the case where

X and Y are jointly normally distributed, an exact solution to this problem has

been derived by Fieller (1932, 1940, 1944, 1954); for more detailed discussions see

Kendall and Stuart (1961), Finney (1978), Miller (1986), and Buonaccorsi (2001).

But in applications, practitioners often do not use Fieller’s results and apply ad-

hoc methods instead. Perhaps the main reason is that Fieller’s confidence regions

do not look like ”normal” confidence intervals and are often perceived as counter-

intuitive. In benign cases they form an interval which is not symmetric around

the estimator, while in worse cases the confidence region consists of two disjoint

unbounded intervals, or even of the whole real line. Especially the latter case

is highly unusual as the confidence region does not exclude any value at all —

certainly not what one would expect from a “well-behaved” confidence region.

However, different researchers (Gleser and Hwang, 1987; Koschat, 1987; Hwang,

1995) have shown that any method which is not able to generate such unbounded

confidence limits for a ratio leads to arbitrary large deviations from the intended

confidence level. For a discussion of the conditional confidence level, given that

the Fieller confidence limits are bounded, see Buonaccorsi and Iyer (1984).
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There have been several approaches to present Fieller’s methods in a more intu-

itive way. Especially remarkable are the ones which rely on geometric arguments.

Milliken (1982) attempted a geometric proof for Fieller’s result in the case where

X and Y are independent normally distributed random variables. Unfortunately,

his proof contained an error which led him to the wrong conclusion that Fieller’s

confidence regions were too conservative. Later, his proof was corrected and

simplified by Guiard (1989). He considers the case that X and Y are jointly nor-

mally distributed according to (X, Y ) ∼ N(µ, σ2V ), where the mean µ and the

scale σ2 of the covariance are unknown, but the covariance matrix V is known.

Guiard presents a geometric construction of confidence regions, and then shows

by an elegant comparison to a likelihood ratio test that the constructed regions

are exact and coincide with Fieller’s solution. The drawback of his proof is that it

only works in the case where the covariance matrix V is known, which in practice

is usually not the case. Moreover, although the confidence sets are constructed

by a geometric procedure, Guiard’s proof relies on properties of the likelihood

ratio test and does not give geometric insights into why the construction is cor-

rect. In this article we derive several simple geometric constructions for exact

confidence sets for ratios. Our construction coincides with Guiard’s if (X, Y )

are normally distributed with known covariance matrix V , but it is also valid

in the case where V is unknown. Our proof techniques are remarkably simple

and purely geometric. The understanding gained by our approach then allows to
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extend the geometric construction from normally distributed random variables

to more general classes of distributions. While it is relatively straightforward to

define confidence sets for elliptically symmetric distributions, another extension

leads to a completely new construction of confidence sets for ratios which is exact

for a very large class of distributions. Essentially, the only assumptions we have

to make is that the means of X and Y exist and that it is possible to construct

exact confidence sets for the mean of linear combinations of the form a1X +a2Y .

To our knowledge, this is the first definition of exact confidence sets for ratios

of very general classes of distributions. Finally, using the geometric insights also

leads to a simple bootstrap procedure for confidence sets for ratios. This method

is particularly well-suited for highly asymmetric and heavy-tailed distributions.

1.1 Definitions and notation

We will always consider the following situation. We are given a sample of n

pairs Zi := (Xi, Yi)i=1,...,n drawn independently according to some underlying

distribution. In the first part we will always assume that this joint distribution

is a 2-dimensional normal distribution N(µ,C) with mean µ = (µ1, µ2) and

covariance matrix C =
(

c11 c12
c21 c22

)
where both µ and C are unknown. Later we will

also study more general classes of distributions. Our goal will be to estimate the

ratio ρ := µ2/µ1 and construct confidence sets for this ratio. To estimate the

unknown means µ1 and µ2 and the covariance matrix Ĉ =
(

ĉ11 ĉ12
ĉ21 ĉ22

)
we will use
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the standard estimators:

µ̂1 :=
1
n

n∑
i=1

Xi and µ̂2 :=
1
n

n∑
i=1

Yi, (1.1)

ĉ11 :=
1
n

1
n− 1

n∑
i=1

(Xi − µ̂1)2 and ĉ22 :=
1
n

1
n− 1

n∑
i=1

(Yi − µ̂2)2 (1.2)

ĉ12 := ĉ21 =
1
n

1
n− 1

n∑
i=1

(Xi − µ̂1)(Yi − µ̂2). (1.3)

Note that we rescaled the estimators ĉij by 1/n to reflect the variability of the

estimators µ̂1 and µ̂2. This will be convenient later on. As estimator for the ratio

ρ = µ2/µ1 we use ρ̂ := µ̂2/µ̂1. Note that our goal is to estimate E(Y )/E(X) and

not E(Y/X). In fact, if X and Y are normally distributed, the latter quantity

does not even exist. As in this situation the estimators µ̂1 and µ̂2 are normally

distributed as well, we can also see that the estimator ρ̂ cannot be unbiased, as

its expectation E(ρ̂) = E(µ̂2/µ̂1) simply does not exist. For more discussion on

the bias of the estimator ρ̂ see Beale (1962); Tin (1965); Durbin (1959); Rao

(1981); Miller (1986) and Dalabehera and Sahoo (1995).

For α ∈]0, 1[, a confidence set (or confidence region) of level 1−α for a parameter

θ ∈ Θ is defined to be a set R constructed from the sample such that for all

θ ∈ Θ it holds that Pθ(θ ∈ R) ≥ 1 − α. If this statement holds with equality,

then the confidence set R is called exact, otherwise it is called conservative. If the

statement Pθ(θ ∈ R) = 1− α only holds in the limit for the sample size n →∞,

the confidence set R is called asymptotically exact. A confidence interval [l, u] is

called equal-tailed if Pθ(θ < l) = Pθ(θ > u). It is called symmetric around θ̂ if it

has the form [θ̂− q, θ̂ + q]. For general background reading about confidence sets
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we refer to Chapter 20 of Kendall and Stuart (1961), Section 5.2 of Schervish

(1995), and Chapter 4 of Shao and Tu (1995). For a real-valued random variable

with distribution function F and a number α ∈]0, 1[, the α-quantile of F is defined

as the smallest number x such that F (x) = α. We will denote this quantile by

q(F, α). In the special case where F is induced by the Student-t distribution with

f degrees of freedom, we will denote the quantile by q(tf , α).

Many of the geometric arguments in this paper will be based on orthogonal

projections of the two-dimensional plane to a one-dimensional subspace. In the

two-dimensional plane, we define the line Lρ through the origin with slope ρ and

the line Lρ⊥ orthogonal to Lρ by

Lρ := {(x, y) ∈ R2| y = ρx} and Lρ⊥ := {(x, y) ∈ R2| y = (−1/ρ)x}.

For an arbitrary unit vector a = (a1, a2)′ ∈ R
2 let πa : R2 → R, x 7→ a′x =

a1x1+a2x2 be the orthogonal projection of the two-dimensional plane on the one-

dimensional subspace spanned by a, that is on the line Lr with slope r = a2/a1.

We will also write πr for the projection on Lr, and πr⊥ for the projection on

the line Lr⊥ . Let C ∈ R
2×2 be a covariance matrix (i.e., positive definite and

symmetric) with eigenvectors v1, v2 ∈ R
2 and eigenvalues λ1, λ2 ∈ R. Consider

the ellipse centered at some point µ ∈ R
2 such that its principal axes have the

directions of v1, v2 and have lengths q
√

λ1 and q
√

λ2 for some q > 0. We denote

this ellipse by E(C, µ, q) and call it the covariance ellipse corresponding to C

centered at µ and scaled with parameter q. This ellipse can also be described as

the set of points z ∈ R2 which satisfy the ellipse equation (z−µ)′C−1(z−µ) = q2.



CONFIDENCE SETS FOR RATIOS 7

2. Exact confidence regions for normally distributed

random variables

Let us start with a few geometric observations. For given µ = (µ1, µ2) ∈ R
2,

the ratio ρ = µ2/µ1 can be depicted as the slope of the line Lρ in the two-

dimensional plane which passes both through the origin and the point (µ1, µ2).

The estimated ratio ρ̂ is given as the slope of the line through the origin and the

point µ̂ = (µ̂1, µ̂2) (cf. Figure 2.1). Consider confidence interval R = [l, u] ⊂ R

that contains the estimator ρ̂. The lower and upper limits of this interval corre-

spond to the slopes of the two lines passing through the origin and the points (1, l)

and (1, u), respectively. Let W denote the wedge enclosed by those two lines.

0 1 µ̂1

0

l

µ̂2 µ̂1

u

µ̂2

Confidence interval

Figure 2.1: The ratio µ̂2/µ̂1 can be depicted as the slope of the line through the points

(0, 0) and (µ̂1, µ̂2). The ratios inside [l, u] correspond to the slopes of all lines in the

wedge spanned by the lines with slopes l and u. For a given wedge, the corresponding

interval [l, u] can be obtained by intersecting the wedge with the line x = 1.
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The slopes of the lines inside the wedge exactly correspond to the ratios inside

the interval R. The other way round, the interval [l, u] can be reconstructed from

the wedge as the intersection of the wedge with the line x = 1 (cf. Figure 2.1).

2.1 Geometric construction of exact confidence sets

In the following we want to construct an appropriate wedge containing µ̂ such

that the region obtained by intersection with the line x = 1 yields an exact

confidence region for ρ of level 1 − α. This wedge will be constructed as the

smallest wedge containing a certain ellipse around the estimated mean (µ̂1, µ̂2).

Construction 1 (Geometric construction of exact confidence regions

Rgeo for ρ in case of normal distributions)

1. Estimate the means µ̂1 and µ̂2 and the covariance matrix Ĉ according to

Equations (1.1) to (1.3).

2. Define the real number q as q(tn−1, 1− α/2), that is the (1− α/2)-quantile

of the Student-t distribution with n− 1 degrees of freedom.

3. In the two-dimensional plane, plot the ellipse E = E(Ĉ, µ̂, q) centered at

the estimated joint mean µ̂ = (µ̂1, µ̂2), with shape according to the estimated

covariance matrix Ĉ, and scaled by the number q computed in the step before.

4. Depending on the position of the ellipse, distinguish between the following

cases (see Figure 2.2).

(a) If (0, 0) is not inside E, construct the two tangents to E through the
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origin (0, 0) and let W be the wedge enclosed by those tangents. Define

the region Rgeo as the intersection of W with the line x = 1. Depending

on whether the y-axis lies inside W or not, this results in an exclusive

unbounded or a bounded confidence region.

(b) If (0, 0) is inside E, choose the confidence region as Rgeo =] −∞,∞[

(completely unbounded case).

Let us give some intuitive reasons why the three cases make sense. In the first

case, the denominator µ̂1 is significantly different from 0. Observe that this is the

case if and only if the ellipse E does not touch the y-axis. Here we do not expect

any difficulties from dividing by µ̂1 as the denominator is “safely away from 0”.

Our uncertainty about the value of ρ is restricted to some interval around ρ,

which corresponds to the bounded case. The situation is more complicated if

the denominator is not significantly different from 0, that is the ellipse intersects

with the y-axis. As we divide by a number potentially close to 0, we cannot

control the absolute value of the outcome, which might become arbitrarily large,

nor can we be sure about its sign. Hence, regions of the form ] − ∞, c1] and

[c2,∞[ should be part of the confidence region. If, additionally, we are confident

that the numerator is not too small, then we expect that ρ is not very close to

0. This is reflected by the “exclusive unbounded case”. If, on the other hand,

the numerator is not significantly different from 0, then we cannot guarantee for

anything: when dividing 0/0 any outcome is conceivable. Here the confidence

set should coincide with the whole real line: the “completely unbounded” case.
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bounded

0 1

bounded

0 1

exclusive unbounded

0 1

completely unbounded

0 1

Figure 2.2: The three cases in the construction of the confidence set Rgeo: bounded,

exclusive unbounded, and completely unbounded.

Theorem 1 (Rgeo is an exact confidence set for ρ) Let (Xi, Yi)i=1,...,n be

an i.i.d. sample drawn from the distribution N(µ,C) with unknown µ and C,

and let Rgeo be the regions constructed according to Construction 1. Then Rgeo

is an exact confidence region of level 1−α for ρ, that is for all µ and C we have

P (ρ ∈ Rgeo) = 1− α.

Proof. Let a = (a1, a2)′ ∈ R
2 be an arbitrary unit vector. We denote by

U := πa(X, Y ) the projection of the joint random variable (X, Y ) on the sub-

space spanned by a. Then U is distributed according to N(a′µ, a′Ca). The

independent sample points (Xi, Yi)i=1,...n are mapped by πa to independent sam-

ple points (Ui)i=1,...,n. It is easy to see that the length of the interval I := πa(E)

is 2q(a′Ĉa)1/2. Taking into account the choice of q in Construction 1 as the

(1−α/2)-quantile of the Student-t distribution, by the normality assumption on

(X, Y ) we can conclude that the projected ellipse πa(E) is a (1 − α)-confidence
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Figure 2.3: Projection of the ellipse E on the subspace spanned by ρ⊥.

interval for the mean πa(µ) of the projected random variables:

1− α = P
(
πa(µ) ∈ [πa(µ̂)− q(a′Ĉa)1/2, πa(µ̂) + q(a′Ĉa)1/2]

)
= P (πa(µ) ∈ πa(E)) .

This equation is true for all unit vectors a. Now we want to consider

the particular projection πρ⊥ on the line Lρ⊥ (that is, we choose a =

(ρ/
√

1 + ρ2,−1/
√

1 + ρ2)). Showing that πρ⊥(µ) ∈ πρ⊥(E) ⇐⇒ ρ ∈ Rgeo

will complete our proof. As in the construction of Rgeo we distinguish two cases.

If the origin is not inside the ellipse E we can construct the wedge W as de-

scribed in the construction of Rgeo. In this case we have the following geometric
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equivalences (see Figure 2.3):

πρ⊥(µ) ∈ πρ⊥(E) ⇐⇒ 0 ∈ πρ⊥(E) ⇐⇒ E ∩ Lρ 6= ∅ ⇐⇒ Lρ ⊂ W ⇐⇒ ρ ∈ Rgeo.

In the second case, the origin is inside in the ellipse E. In this case it is clear

that πρ⊥(µ) = 0 is always inside πρ⊥(E). On the other hand, by definition the

region Rgeo coincides with ]−∞,∞[ in this case, and thus ρ ∈ Rgeo is true. ,

2.2 Comparison to Fieller’s confidence sets

Now we want to compare the confidence regions obtained by Construction 1 to

the classic confidence sets constructed by Fieller (1932, 1940, 1944, 1954). To

this end let us first state Fieller’s result according to Subsection 4, p. 176-177 of

(Fieller, 1954). We reformulate his definition in our notation:

Definition 2 (Fieller’s confidence regions for ρ in case of normal dis-

tributions) Compute the quantities

q2
exclusive :=

µ̂2
1

ĉ11
and q2

complete :=
µ̂2

2ĉ11 − 2µ̂1µ̂2ĉ12 + µ̂2
1ĉ22

ĉ11ĉ22 − ĉ2
12

and

l1,2 =
1

µ̂2
1 − q2ĉ11

(
(µ̂1µ̂2 − q2ĉ12)±

√
(µ̂1µ̂2 − q2ĉ12)2 − (µ̂2

1 − q2ĉ11)(µ̂2
2 − q2ĉ22)

)
with q as in the definition of the confidence regions Rgeo. Then define the confi-

dence set RFieller of level 1− α for the ratio ρ as follows:

RFieller =



]−∞,∞[ if q2
complete ≤ q2

]−∞,min{l1, l2}] ∪ [max{l1, l2},∞[ if q2
exclusive < q2 < q2

complete

[min{l1, l2},max{l1, l2}] otherwise

Those three cases result in completely unbounded, exclusive unbounded, and bounded
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confidence sets, respectively.

Theorem 3 (Fieller) Let (Xi, Yi)i=1,...,n be an i.i.d. sample drawn from the

distribution N(µ,C) with unknown µ and C. Then RFieller as given in Definition

2 is an exact confidence region of level 1− α for ρ.

Proof of Fieller’s theorem (sketch). Consider the function

Tr,Ĉ(x) :=
x2 − rx1√

ˆc22 − 2r ˆc12 + r2 ˆc11

(2.1)

where r ∈ R is a parameter and Ĉ denotes the sample covariance matrix. If

applied to r = ρ and x = µ̂, the statistic Tρ,Ĉ(µ̂) has a Student-t distribution

with (n − 1) degrees of freedom. The set RFieller := {r ∈ R| Tr,Ĉ(µ̂) ∈ [−q, q]}

now satisfies (by the definition of q as Student-t quantile)

P (ρ ∈ RFieller) = P (Tρ,Ĉ(µ̂) ∈ [−q, q]) = 1− α.

Solving −q ≤ Tr,Ĉ(µ̂) ≤ q for r leads to a quadratic inequality whose solutions

are given by Fieller’s theorem. ,

Let us make a few comments about this proof. The most important property of

the statistic Tρ,Ĉ(µ̂) is the fact that its distribution does not depend on ρ. That

is, it is a pivotal quantity. Otherwise, solving the inequalities −q ≤ Tr,Ĉ(µ̂) ≤ q

for r would not lead to an expression which is independent of ρ. Moreover,

note that the mapping Tρ,Ĉ projects the points on the line Lρ⊥ , and additionally

scales them such that the projected sample mean has variance 1. In particular it is

interesting to note that because Tρ,Ĉ(µ) = 0, the set Jρ = [Tρ,Ĉ(µ̂)−q, Tρ,Ĉ(µ̂)+q]
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is a (1− α)-confidence interval for the projected mean Tρ,Ĉ(µ):

P (Tρ,Ĉ(µ) ∈ Jρ) = P (0 ∈ [Tρ,Ĉ(µ̂)− q, Tρ,Ĉ(µ̂) + q]) = P (Tρ,Ĉ(µ̂) ∈ [−q, q]) = 1− α.

This property will be used later on to generalize Fieller’s confidence set to more

general distributions. Also note that solving the inequality −q ≤ Tr,Ĉ(µ̂) ≤ q

coincides with the construction of the wedge in the geometric construction. The

wedge can be seen as exactly the lines with slope r such that the projection of µ̂

on Lr̂⊥ is still within [−q, q]. Based on all those observations it is very natural

to expect a close relation between RFieller and Rgeo, which indeed exists:

Theorem 4 (Rgeo and RFieller coincide) The confidence region Rgeo defined

in Construction 1 coincides with RFieller as given in Definition 2.

Proof. (Sketch) First one has to show that the three cases in Fieller’s theorem

coincide with the three cases in the geometric approach. Second, one then has

to verify that the numbers l1 and l2 in Fieller’s theorem coincide with the slopes

of the tangents to the ellipse. Both steps can be solved by straightforward but

lengthy calculations. Details can be found in von Luxburg and Franz (2004). ,

Note that in the proof of Fieller’s theorem we did not directly use the fact that

we have paired samples (Xi, Yi)i=1,...,n. Indeed, Fieller’s theorem and its proof

can also be valid in the more general setting where we are given two independent

samples X1, ..., Xn and Y1, ..., Ym with a different number of sample points, and

use unbiased estimators for the means µ1, µ2 and independent unbiased estima-

tors for the (co)variances ĉij . In this case one has to take care to choose the

degrees of freedom in the Student-t-distribution appropriately, see Buonaccorsi
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(2001) and Section 3.3.3 of Rencher (1998).

3. Exact confidence sets for general random variables

In this section we show how to extend our geometric approach to non-normally

distributed random variables.

3.1 Elliptically symmetric distributions

In the normally distributed case, the main reason why Construction 1 leads to

exact confidence sets is that the projected and studentized mean is Student-t

distributed, no matter in which direction we project. More generally, such a

property holds for all elliptically symmetric random variables. Elliptically sym-

metric random variables can be written in the form µ + AY where µ is a shift

parameter, A is a matrix with AA′ = C, and Y any spherically symmetric ran-

dom variable generated by some distribution H on R+. For a brief overview of

spherical and elliptical distributions see Eaton (1981), for an extensive treatment

see Fang, Kotz, and Ng (1990). In particular, if X is an elliptically symmetric

random variable with shift µ, covariance C, and generator H, then the statistic

Tr,Ĉ(µ̂) introduced in Equation (2.1) is a pivotal quantity which has the same

distribution for all r ∈ R. Denote the distribution function of this statistic by G.

To extend Construction 1 to the case of elliptically symmetric distributions, all

we have to do is to define the quantile q in Construction 1 or Definition 2 by the

quantile q(G, 1 − α/2) of the distribution G. With similar arguments as in the

last sections one can see that the resulting confidence set is exact.
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3.2 Confidence sets for a very general class of distributions

Once we leave the class of elliptically symmetric distributions, the distributions of

the projected means are no longer independent of the direction of the projection,

and all the techniques presented above cannot be used any more. However, there

is a surprisingly simple way to circumvent this problem. To see this, let us

re-interpret Construction 1 as depicted in Figure 3.1. Previously, to determine

whether r ∈ R should be element of Rgeo we checked whether the line with slope

r is inside the wedge enclosing the ellipse E. But note that the same result can

be achieved if we project the sample on the line Lr⊥ , construct a one-dimensional

confidence set Jr for the mean on Lr⊥ , and check whether 0 ∈ Jr or not. This

observation is the key to the following construction:

Construction 2 (Exact confidence sets Rgen for ρ in case of general

distributions)

1. For each r ∈ R, project the sample points on Lr⊥, that is define the new

points Ur,i = πr⊥(Xi, Yi), i = 1, . . . , n.

2. For each r ∈ R, construct a confidence set Jr for the mean of Ur,i, that is a

set such that P (πr⊥(µ) ∈ Jr) = 1− α.

3. Then define the confidence set Rgen for ρ as Rgen = {r ∈ R | 0 ∈ Jr}.

The big advantage of this construction is that the projection in direction of the

true value ρ is not singled out as a “special” projection, we simply look at all

projections. Hence, Construction 2 does not require any knowledge about ρ.

Theorem 5 (Rgen is an exact confidence set for ρ) Let (Xi, Yi)i=1,...,n ∈ R2
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X

Y

r

X

Y

r

Figure 3.1: Second geometric interpretation: By definition, ratio r is element of Fieller’s

confidence set Rgeo if the line Lr (depicted by the little arrow) is inside the wedge en-

closing the covariance ellipse. This is the case if and only if the origin is inside the

projection Jr := πr⊥(E) of the ellipse on the line Lr⊥ . The left panel shows a case where

r ∈ Rgeo, the right panel a case where r 6∈ Rgeo.

be i.i.d. pairs of random variables with arbitrary distribution such that the joint

mean of (X, Y ) exists. If the confidence sets Jr used in Construction 2 exist and

are exact (resp. conservative resp. liberal) confidence sets of level (1 − α) for

the means of πr⊥((Xi, Yi))i=1,...,n, then Rgen is an exact (resp. conservative resp.

liberal) confidence set for ρ.

Proof. In the exact case, we have to prove that the true ratio ρ satisfies

P (ρ ∈ Rgen) = (1 − α). By definition of Rgen, for each r ∈ R we have that

r ∈ Rgen ⇐⇒ 0 ∈ Jr. In particular, this also holds for r = ρ. Moreover, the

projection corresponding to the true ratio ρ projects the true mean µ on the

origin of the coordinate system. By linearity, the projection of the true mean

πρ⊥(µ) equals the mean of the projected random variables. By construction of

Jr we know that the latter is inside Jr with probability exactly (1 − α). So we
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can conclude that P (ρ ∈ Rgen) = P (0 ∈ Jρ) = P (πρ⊥(µ) ∈ Jρ) = 1− α. ,

To our knowledge, Construction 2 is the first construction of exact confidence

sets for general distributions. It reduces the difficult problem of estimating con-

fidence sets for the ratio of two random variables to the problem of estimating

confidence sets for the means of one-dimensional random variables. On a first

glance this looks very promising. However, the crux for applying this construc-

tion in practice is that one has to know the analytic form of the distribution of

the projected means. For this one has to be able to derive an analytic expression

for general linear combinations of X and Y . While there might be some special

cases in which this is tractable, for the vast majority of distributions such an

analytic form is not easy to obtain. As a consequence, while being of theoretic

interest, Construction 2 is of limited relevance for practical applications.

4. Conservative confidence sets for more general ran-

dom variables

Our geometric principles can also be used to derive very simple conservative con-

fidence sets for general distributions. The main idea is to replace the ellipse used

in Construction 1 by a more general convex set M ⊂ R
2. A straightforward idea

is to choose M as a (1 − α)-confidence set for the bivariate joint mean µ ∈ R
2,

that is a set such that P (µ ∈ M) = 1 − α. Then, as above we can construct

the wedge W around M which is given by the two enclosing tangents and choose
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a confidence region Rcons by intersecting the wedge with the line x = 1, distin-

guishing between the same three cases as above.

Another simple but effective way to choose the convex set M it to take the axis-

parallel rectangle A := I1 × I2, where the intervals I1 := [l1, u1] and I2 := [l2, u2]

are confidence intervals for the one-dimensional means µ1 of X and µ2 of Y .

Formally, this leads to the following construction:

Construction 3 (Geometric construction of conservative confidence re-

gions Rcons for ρ for general distributions)

1. Construct exact (or conservative) confidence intervals I1 and I2 of level

(1 − α/2) for the means of X and Y , respectively. In the two-dimensional

plane, define the rectangle A = I1 × I2.

2. (a) If (0, 0) is not inside A, construct the two tangents to A through the

origin (0, 0), and let W be the wedge enclosed by those tangents. Define

the confidence region Rcons as the intersection of W with the line x = 1.

Depending on whether the y-axis lies inside W or not this results in an

exclusive unbounded or a bounded confidence region

(b) If (0, 0) is inside A, choose the confidence region as Rcons =]−∞,∞[.

Theorem 6 (Rcons is a conservative confidence set for ρ) Let

(Xi, Yi)i=1,...,n ∈ R
2 be i.i.d. pairs of random variables with arbitrary dis-

tribution such that the joint mean of (X, Y ) exists. If the confidence sets I1 and

I2 used in Construction 3 exist and are exact or conservative confidence sets of
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level (1− α) for the means of X and Y , then Rcons is a conservative confidence

set for ρ of level (1− 2α).

The proof of this theorem can be given in two lines:

P (ρ ∈ Rcons) = P (µ ∈ W ) ≥ P (µ ∈ A) = P (µ1 ∈ I1 and µ2 ∈ I2)

= 1− P (µ1 6∈ I1 or µ2 6∈ I2) ≥ 1− (P (µ1 6∈ I1) + P (µ2 6∈ I2)) = 1− 2α. ,

Interestingly, it can be seen easily that the set Rcons constructed using the rectan-

gle coincides with the set obtained by “dividing” the one-dimensional confidence

intervals I2 by I1, namely Rcons = I2/I1 :=
{ y

x ; y ∈ I2, x ∈ I1

}
. The latter is

a heuristic for confidence sets for ratios which can sometimes be found in the

literature, usually without any theoretical justification. Our geometric method

now reveals effortlessly that it is statistically safe to use this heuristic, but that

it will lead to conservative confidence sets of level 1− 2α.

Of course, one could think of even more general ways to construct a convex set

M ⊂ R
2 as base for the conservative geometric construction. For example, in-

stead of using axis-parallel projections as in Construction 3, one could base the

convex set M on projections in arbitrary directions (for example, using the two

projections in direction of ρ and ρ⊥, or even using more than two projections).

However, we would like to stress one big advantage of using the axis-parallel

rectangle. While the exact generalizations presented in Section 3 require to con-

struct confidence sets for the means of arbitrary linear combinations of the form

aX + bY , for the rectangle construction we only need to be able to construct ex-

act confidence sets for the marginal distributions of X and Y , respectively. One
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can envisage many situations where distributional assumptions on X and Y are

reasonable, but where the distributions of projections of the form aX+bY cannot

be computed in closed form. In such a situation, the rectangle construction can

serve as an easy loophole. The prize we pay is the one of obtaining conservative

confidence sets for the ratio instead of exact ones. But in many cases, obtaining

confidence sets which are provably conservative might be preferred over using

heuristics with unknown guarantees to approximate exact confidence sets.

5. Bootstrap confidence sets

In the last sections we have seen how exact and conservative confidence sets for

ratios of very general classes of distributions can be constructed. In practice,

the application of those methods is limited by the problem that we still need

to know the exact distributions of the projections of (X, Y ). In this section

we want to investigate how approximate confidence sets can be constructed in

cases where the underlying distributions are unknown. A natural candidate to

construct approximate confidence sets for ratios are bootstrap procedures (e.g.,

Efron, 1979; Efron and Tibshirani, 1993; Shao and Tu, 1995; Davison and Hink-

ley, 1997). However, if the variance of the statistics of interest does not exist, as

is usually the case for ρ̂, bootstrap confidence regions can be erroneous (Athreya,

1987; Knight, 1989). Moreover, standard bootstrap methods which attempt to

bootstrap the statistic ρ̂ directly cannot result in unbounded confidence regions.

This is problematic, as it has been shown that any method which is not able
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to generate unbounded confidence limits for a ratio can lead to arbitrary large

deviations from the intended confidence level (Gleser and Hwang, 1987; Koschat,

1987; Hwang, 1995). Hence, bootstrapping ρ̂ directly is not an option. Instead,

in the literature there are several approaches to use bootstrap methods based on

the studentized statistic Tρ,Ĉ(µ̂) introduced in Equation (2.1). A simple approach

along those lines is taken in Choquet, L’Ecuyer, and Léger (1999). The authors

use standard bootstrap methods to construct a confidence interval [q1, q2] for the

mean of the statistic Tρ̂,Ĉ(µ̂). As confidence set for the ratio, they then use the

interval [ρ̂ − q2Sρ̂, ρ̂ − q1Sρ̂] where Sρ̂ is the estimated standard deviation of ρ̂.

However, this approach is problematic as well: the confidence sets do not have

the qualitative behavior as the Fieller ones, and as they are always finite, the

coverage probability can be arbitrarily small.

5.1 Bootstrap approach by Hwang and its geometric interpretation

A more promising bootstrap approach for ratios has been presented by Hwang

(1995). He suggests to use standard bootstrap methods to construct confidence

sets for the mean of Tρ̂,Ĉ(µ̂). To determine the confidence set for the ratio, he then

proceeds as Fieller and solves a quadratic equation to determine the confidence

set for the ratio. Hwang (1995) argues that his confidence sets are advantageous

when dealing with asymmetric distributions such as exponential distributions.

However, we need to be careful here. Hwang (1995) only treats the case of one-

sided confidence sets, where he constructs a confidence set of the form ]−∞, q]
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for Tρ̂,Ĉ(µ̂) and then solves the quadratic equation Tρ̂,Ĉ(µ̂)2 ≤ q2. This leads

to the three well-known cases bounded, exclusively unbounded, completely un-

bounded. However, the two-sided case is more involved and is not discussed in

his paper. If one uses symmetric bootstrap confidence sets of the form [−q, q]

for Tρ̂,Ĉ(µ̂), then one can proceed by solving one quadratic inequality similar

to above. However, if one wants to exploit the fact that the distribution might

not be symmetric, one would have to use asymmetric (for example equal-tailed)

confidence sets of the form [q1, q2] for Tρ̂,Ĉ(µ̂). But then, solving the equations

q1 ≤ Tρ̂,Ĉ(µ̂) ≤ q2 can lead to unpleasant effects. To satisfy both inequalities

simultaneously, one has to solve two different quadratic inequalities. The joint

solution can not only attain the three Fieller types, but all possible intersections

of two Fieller type sets. For example, one can obtain confidence sets for the ratio

which are only unbounded on one side, such as ] − ∞, l] ∪ [l′, u]. Such confi-

dence sets are quite implausible: as we discussed on page 9, in cases where the

denominator is not significantly different from 0 the confidence set should be un-

bounded on both ends. Otherwise, the confidence set of the ratio would reflect a

certainty about the sign of the denominator that is not present in the confidence

set of the denominator itself. Consequently, we believe that Hwang’s approach

should only be used with symmetric (and not with equal-tailed) confidence sets

for Tρ̂,Ĉ(µ̂). In this case, Hwang’s bootstrap approach can easily be interpreted

in our geometric approach and is in fact very similar to Fieller’s approach: as in

Construction 1, one forms the covariance ellipse centered at µ̂ using the estimated
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covariance matrix Ĉ. But instead of using quantiles of the Student-t distribution

to determine the width q of the ellipse, one now uses bootstrap quantiles for this

purpose. Then one proceeds exactly as in the Fieller case. This geometric inter-

pretation reveals that Hwang’s approach relies on one crucial assumption on the

distribution of the sample means: their covariance structure has to be elliptical.

So while seeming distribution-free at first glance, Hwang’s bootstrap approach

with symmetric confidence sets relies on the implicit assumption that the sample

mean is elliptically distributed.

5.2 A geometric bootstrap approach

We now want to suggest a bootstrap approach which potentially is more suited to

deal with highly asymmetric distributions. To this end, we adapt the geometric

Construction 3 in a straightforward manner: we simply use bootstrap methods

to construct the one-dimensional confidence intervals I1 and I2 used in Construc-

tion 3, and then proceed exactly as in Construction 3. The advantage of this

approach is obvious: we do not need to make any assumptions on the distribu-

tion, can easily use asymmetric confidence intervals I1 and I2, and still obtain a

Fieller-type behavior (as opposed to Hwang’s method, which does not have this

behavior when using asymmetric bootstrap sets). Moreover, our construction

does not assume elliptical covariance structure, and can, for example, be used

for heavy-tailed distributions which are not in the domain of attraction of the

normal law. In this sense, the geometric bootstrap approach can be applied in
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situations where both Fieller’s and Hwang’s confidence sets fail.

Note that one can easily come up with other, more involved bootstrap methods

based on the geometric method. For example, one can use more than two pro-

jections, one can use projections which are not parallel to the coordinate axes,

or one can even base the wedge on more general two-dimensional convex sets in

the plane. A completely different approach can be based on bootstrapping polar

representations of the data (along the lines of Koschat, 1987). We tried all those

alternative approaches in our simulations. However, given that none of them

outperformed the existing methods, we refrain from discussing more details due

to space constraints.

5.3 Simulation study

In this section we would like to present numerical simulations to compare the

bootstrap approach by Hwang, our geometric bootstrap approach, and Fieller’s

standard confidence set.

Setup. For both X and Y we use three different types of distributions. Nor-

mal distributions: Here we always fixed the mean to 1 and varied the variance

between 0.1 and 10. Exponential distributions: They are highly asymmetric, but

still in the domain of attraction of the normal law. Here we varied the mean be-

tween 0.1 and 10. Pareto distributions with density function p(x) = aka/xa+1,

cf. Chapter 20 of Johnson, Kotz, and Balakrishnan (1994). The parameter a

is called the tail index and will be denoted by Tail(X). For a Pareto(k,a) dis-
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tributed random variable, all moments of order larger than a exist, the smaller

moments do not exist. In particular, for a ∈]1, 2[, the expectation exists, but the

variance does not exist. In this case the distribution is heavy-tailed and not in

the domain of attraction of the normal law. In our experiments, we varied the

tail parameter a between 1.1 and 2.5 and always chose parameter k such that

the expectation is 1 (that is, we chose k = (a− 1)/a). For some simulations we

also used an inverted Pareto distribution (a Pareto distribution which has been

flipped around its mean, so that its tail goes in the negative direction).

For each fixed distribution of X and Y , we independently sampled n = 20

(n = 100, n = 1000, respectively) data points Xi and Yi. Then we computed

the Fieller confidence set according to Definition 2, our geometric bootstrap

confidence sets based on Construction 3 as introduced in Section 5.2, Hwang’s

bootstrap confidence sets. Each simulation was repeated R = 1000 times to com-

pute the empirical coverage. As nominal coverage probability we always chose

90% (for investigating coverage, this is more meaningful than the level 95% as

it leaves more room for deviations in both directions). To construct the boot-

strap confidence sets for the one-dimensional means of X and Y (in the geometric

method) and the projection Tρ̂,Ĉ(µ̂) (in Hwang’s method) we used different boot-

strap methods. As default bootstrap method we used bootstrap-t (cf. Efron and

Tibshirani, 1993). We also tried several other standard methods such as the

percentile or the bias corrected and accelerated (BCA) method (cf. Efron and

Tibshirani, 1993), but did not observe qualitatively different behavior. To deal
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with heavy-tailed distributions, we applied methods based on subsampling self-

normalizing sums, as introduced by Hall and LePage (1996), see also Romano

and Wolf (1999). Here one has to choose one parameter, namely the size m of the

subsamples. We did not use any automatic method to optimize this parameter,

but based on values reported in Romano and Wolf (1999) we fixed it to m = 10

(resp. 40, 400) for n = 20 (resp. 100, 1000). For all bootstrap methods, we

tried both equal-tailed and symmetric confidence sets, in all cases with B = 2000

bootstrap samples. We will report the bootstrap results using notations such as

Hwang(symmetric, bootstrap-t) or Geometric(equal-tailed, subsampling). The

terms in parentheses always refer to the construction of the confidence sets for

the respective one-dimensional projections: the first term is either “symmetric”

or “equal-tailed”, the second one “bootstrap-t” or “subsampling”.

Evaluation. In all settings we evaluated the empirical coverage (see Table 5.1)

and the number of bounded confidence sets (see Table 5.2). Due to space con-

straints we cannot show the results for all parameter settings, nor any graphical

evaluation. For very instructive color plots of all evaluations see the supplemen-

tary material (von Luxburg and Franz, 2007).

Coverage properties in case of finite variance. We start with the case where both

X and Y are normally distributed (Table 5.1.A). Here Fieller’s confidence set is

exact, and indeed we can see that it achieves very good coverage values. In terms

of absolute deviation from the nominal confidence level, Hwang performs compa-
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A Empirical coverage: X ∼ normal, Y ∼ normal, n=100, nominal level 0.90

Geometric(symmetric,bootstrap-t) / Hwang(symmetric,bootstrap-t) / Fieller

Var(X)
0.1 1 3 5 10

V
a
r(

Y
)

0.1 1.0 / .90 / .93 .97 / .90 / .94 .96 / .89 / .93 .95 / .89 / .93 .94 / .89 / .93

1 .97 / .91 / .94 .99 / .87 / .92 .99 / .91 / .94 .97 / .88 / .92 .96 / .90 / .93

3 .94 / .89 / .92 .99 / .90 / .94 1.0 / .89 / .91 1.0 / .89 / .93 .99 / .89 / .93

5 .97 / .90 / .94 .98 / .91 / .94 .99 / .88 / .93 1.0 / .91 / .94 .99 / .89 / .93

10 .95 / .90 / .93 .96 / .90 / .93 .97 / .88 / .92 .99 / .88 / .93 .99 / .90 / .93

B Empirical coverage: X ∼ exponential, Y ∼ normal, n=20, nominal level 0.90

Geometric(equal-tailed,bootstrap-t) / Hwang(equal-tailed,bootstrap-t) / Fieller

mean(X)
1 3 5 10

V
a
r(

Y
)

0.1 .93 / .84 / .89 .90 / .84 / .87 .92 / .85 / .89 .92 / .87 / .90

1 .98 / .88 / .91 .98 / .87 / .91 .98 / .87 / .92 .98 / .88 / .92

3 .98 / .89 / .92 .98 / .89 / .92 .98 / .89 / .93 .97 / .87 / .90

5 .97 / .87 / .93 .96 / .87 / .92 .95 / .86 / .90 .95 / .87 / .92

10 .95 / .87 / .92 .95 / .89 / .92 .95 / .87 / .92 .95 / .86 / .91

C Empirical coverage: X ∼ pareto, Y ∼ paretoinverted, n=100, nominal level 0.90

Geometric(equal-tailed,subsampling) / Hwang(equal-tailed,subsampling) / Fieller

Tail(X)
1.1 1.5 1.9 2.1 2.5

T
a
il
(Y

)

1.1 .73 / .17 / .25 .85 / .26 / .35 .79 / .23 / .32 .78 / .23 / .30 .71 / .18 / .25

1.5 .85 / .28 / .38 .96 / .59 / .70 .98 / .65 / .76 .98 / .64 / .75 .97 / .63 / .73

1.9 .82 / .24 / .33 .98 / .63 / .73 .99 / .72 / .82 .99 / .76 / .85 .99 / .75 / .82

2.1 .78 / .20 / .28 .98 / .65 / .75 .99 / .76 / .85 .99 / .77 / .85 .99 / .78 / .87

2.5 .74 / .19 / .26 .97 / .62 / .73 .99 / .75 / .84 .99 / .79 / .86 .99 / .83 / .89

D Empirical coverage: X ∼ pareto, Y ∼ paretoinverted, n=100, nominal level 0.90

Geometric(symmetric,subsampling) / Hwang(symmetric,subsampling) / Fieller

Tail(X)
1.1 1.5 1.9 2.1 2.5

T
a
il
(Y

)

1.1 .72 / .38 / .26 .81 / .43 / .35 .76 / .37 / .30 .76 / .36 / .29 .70 / .31 / .27

1.5 .79 / .43 / .33 .95 / .71 / .71 .97 / .73 / .74 .96 / .75 / .76 .96 / .73 / .74

1.9 .77 / .41 / .31 .96 / .75 / .75 .98 / .80 / .82 .99 / .81 / .83 .98 / .83 / .85

2.1 .75 / .39 / .30 .97 / .74 / .73 .99 / .83 / .84 .99 / .83 / .85 .99 / .86 / .87

2.5 .71 / .39 / .28 .96 / .74 / .74 .98 / .82 / .84 .99 / .86 / .88 .99 / .87 / .89

E Empirical coverage: X ∼ pareto, Y ∼ paretoinverted, n=1000, nominal level 0.90

Geometric(equal-tailed,bootstrap-t) / Hwang(equal-tailed,bootstrap-t) / Fieller

Tail(X)
1.1 1.5 1.9 2.1 2.5

T
a
il
(Y

)

1.1 .24 / .24 / .24 .35 / .33 / .33 .27 / .27 / .27 .27 / .26 / .26 .22 / .24 / .24

1.5 .33 / .30 / .30 .84 / .72 / .75 .86 / .74 / .77 .88 / .75 / .78 .87 / .75 / .77

1.9 .29 / .29 / .29 .89 / .78 / .80 .96 / .86 / .90 .95 / .85 / .88 .96 / .87 / .89

2.1 .25 / .25 / .25 .87 / .74 / .76 .97 / .84 / .88 .97 / .85 / .89 .98 / .87 / .91

2.5 .26 / .27 / .27 .86 / .75 / .77 .95 / .86 / .88 .98 / .87 / .91 .98 / .88 / .92

Table 5.1: Empirical coverages of different methods. See text for details.
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A Fraction bounded: X ∼ normal, Y ∼ normal, n=100, nominal level 0.90

Geometric(symmetric,bootstrap-t) / Hwang(symmetric,bootstrap-t) / Fieller

Var(X)
0.1 1 3 5 10

V
a
r(

Y
)

0.1 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 .90 / .95 / .93 .56 / .67 / .60 .17 / .27 / .20

1 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 .93 / .96 / .94 .52 / .63 / .57 .15 / .24 / .18

3 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 .91 / .95 / .92 .54 / .64 / .58 .18 / .26 / .21

5 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 .91 / .96 / .93 .52 / .64 / .57 .19 / .28 / .21

10 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 .92 / .95 / .93 .52 / .63 / .57 .19 / .28 / .22

B Fraction bounded: X ∼ exponential, Y ∼ normal, n=20, nominal level 0.90

Geometric(equal-tailed,bootstrap-t) / Hwang(equal-tailed,bootstrap-t) / Fieller

mean(X)
1 3 5 10

V
a
r(

Y
)

0.1 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

1 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

3 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

5 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

10 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

C Fraction bounded: X ∼ pareto, Y ∼ paretoinverted, n=100, nominal level 0.90

Geometric(equal-tailed,subsampling) / Hwang(equal-tailed,subsampling) / Fieller

Tail(X)
1.1 1.5 1.9 2.1 2.5

T
a
il
(Y

)

1.1 .99 / .41 / .91 1.0 / .69 / .98 1.0 / .84 / .99 1.0 / .88 / 1.0 1.0 / .93 / 1.0

1.5 .99 / .48 / .89 1.0 / .76 / .98 1.0 / .88 / 1.0 1.0 / .94 / 1.0 1.0 / .96 / 1.0

1.9 .98 / .48 / .90 1.0 / .80 / .98 1.0 / .92 / 1.0 1.0 / .96 / 1.0 1.0 / .98 / 1.0

2.1 .99 / .50 / .91 1.0 / .80 / .98 1.0 / .94 / 1.0 1.0 / .96 / 1.0 1.0 / .99 / 1.0

2.5 .99 / .47 / .89 1.0 / .82 / .99 1.0 / .95 / 1.0 1.0 / .97 / 1.0 1.0 / .99 / 1.0

D Fraction bounded: X ∼ pareto, Y ∼ paretoinverted, n=100, nominal level 0.90

Geometric(symmetric,subsampling) / Hwang(symmetric,subsampling) / Fieller

Tail(X)
1.1 1.5 1.9 2.1 2.5

T
a
il
(Y

)

1.1 .45 / .43 / .90 .80 / .73 / .98 .94 / .86 / 1.0 .96 / .88 / 1.0 .99 / .91 / 1.0

1.5 .48 / .53 / .91 .81 / .79 / .98 .94 / .91 / 1.0 .97 / .92 / 1.0 .99 / .96 / 1.0

1.9 .47 / .55 / .91 .78 / .79 / .97 .92 / .93 / 1.0 .97 / .96 / 1.0 .99 / .98 / 1.0

2.1 .46 / .52 / .90 .81 / .84 / .99 .93 / .93 / 1.0 .96 / .96 / 1.0 .99 / .98 / 1.0

2.5 .45 / .52 / .90 .79 / .81 / .99 .94 / .94 / 1.0 .96 / .97 / 1.0 .98 / .98 / 1.0

E Fraction bounded: X ∼ pareto, Y ∼ paretoinverted, n=1000, nominal level 0.90

Geometric(equal-tailed,bootstrap-t) / Hwang(equal-tailed,bootstrap-t) / Fieller

Tail(X)
1.1 1.5 1.9 2.1 2.5

T
a
il
(Y

)

1.1 .91 / .94 / .95 .99 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

1.5 .91 / .94 / .95 .99 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

1.9 .91 / .94 / .95 .98 / .99 / .99 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

2.1 .91 / .93 / .95 .99 / .99 / .99 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

2.5 .91 / .93 / .94 .99 / .99 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

Table 5.2: Fraction of bounded confidence sets of different methods. See text for details.
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rably to Fieller. The difference is that Fieller tends to be slightly conservative,

while Hwang tends to be slightly liberal. As predicted, the geometric method is

conservative and achieves higher than nominal coverage. For all three methods,

the results based on different sample sizes and different bootstrap constructions

are qualitatively very similar (see supplement).

To investigate the effect of symmetry, we consider the case where one of the

random variables is exponentially distributed and thus highly asymmetric (Ta-

ble 5.1.B). We can see that qualitatively, the three procedures behave as described

above (Fieller slightly conservative, Hwang slightly liberal, geometric conserva-

tive), even for a small sample size n = 20 (results for larger n are similar, see

supplement). The fact that the original distribution was asymmetric seems not

to have much impact on the results.

Coverage properties in heavy-tailed regime. The general picture changes dramat-

ically if we investigate the case of heavy-tailed distributions. Here we consider

simulations with X ∼ Pareto, Y ∼ Paretoinverted. The reason for using the

inverted Pareto distribution for Y (instead of the “standard” one) is that we

want to study a general asymmetric case — the distribution of the projections

on Lρ⊥ would be perfectly symmetric in case where both X and Y are generated

according to the same distribution. Results for X, Y ∼ Pareto can be found in

the supplement. In Table 5.1.C we can see that for the heavy-tailed parameters

a < 2, both Fieller’s and Hwang’s confidence sets fail completely and lead to

empirical coverage probabilities as low as 0.20 instead of 0.90. For Hwang, this
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happens no matter what bootstrap method we use (symmetric or equal-tailed,

bootstrap-t or subsampling), see Tables 5.1.C to E and supplement. The method

Geometric(equal-tailed, subsampling), on the other hand, performs much better

than both Fieller’s and Hwang’s methods in the heavy-tailed regime a < 2. The

overall coverage of the geometric method never drops below 0.70, a dramatic

improvement over the other two methods. It is interesting to observe that the

good performance of the geometric method in the heavy-tailed regime decreases

massively if we use bootstrap-t instead of the subsampling bootstrap intervals

(Table 5.1.E). The reason is that in the heavy-tailed case, bootstrap-t does not

achieve good coverage for the one-dimensional projections, and then of course

the coverage of the final confidence intervals suffers as well. Finally, when the

Pareto tail parameter moves in the region a > 2, we are again in the domain of

attraction of the normal law. Here all results resemble again the ones already

reported for the finite variance case.

Interpretation of the results in terms of projections. The quality of all three

methods crucially depends on the quality of the one-dimensional confidence sets

under consideration. For distributions in the domain of attraction of the normal

law, Fieller’s confidence sets perform very well, even for highly asymmetric dis-

tributions. The likely reason is that even for small sample sizes, the distribution

of the sample means is already so close to normal that using bootstrap does not

lead to any advantage over using a normal distribution assumption. In the heavy-

tailed regime, both Hwang and Fieller fail. This is the case because both of them
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do not achieve good coverage probabilities for the projected one-dimensional ran-

dom variables Tρ̂,Ĉ(µ̂) in the first place. Here the geometric method has a big

advantage over the other two methods, because instead of considering projections

in arbitrary directions we only have to deal with projections on the coordinate

axes. The fact that the coverage of the one-dimensional confidence sets on the

projections is an important indicator for the quality of the confidence set for the

ratio can also observed from the fact that the coverage of 0.70 achieved by Ge-

ometric(subsampling) in case a = 1.1 (Tables 5.1.C to E) is in accordance with

values reported by Romano and Wolf (1999) for the coverage of confidence sets

for the mean of Pareto distributions.

Number of bounded confidence sets. In Table 5.2 we compare the number of

bounded confidence sets for the three methods. Often, those numbers do not

differ too much across the different methods. In some cases, Geometric(equal-

tailed) performs favorably in that it has more bounded confidence sets than the

other methods (see supplement). In the asymmetric heavy-tailed case it can

be seen that when using symmetric rather than equal-tailed confidence sets in

the geometric method, the number of bounded confidence sets decreases heavily

(compare Tables 5.2.C and D). This is due to the fact that the one-dimensional

confidence sets then become very large in both directions (whereas the equal-

tailed ones are only large in one direction). Hence, the origin is contained in the

resulting rectangle much more often, which then leads to unbounded confidence

sets. This strongly speaks in favor of using equal-tailed bootstrap confidence
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sets rather than symmetric ones in the geometric method. Note that for Hwang’s

method, using equal-tailed confidence sets can lead to implausible confidence sets

which are unbounded on one side, but bounded on the other side (as explained

above). In our experiments, such confidence sets indeed did occur, but not very

often (about 20 times out of 1000 repetitions).

6. Summary

The geometric approach shows that confidence sets for ratios can be derived from

one-dimensional confidence sets for the mean of projections of (X, Y ). Of course,

the quality of the ratio confidence sets crucially depends on the quality of those

one-dimensional confidence sets. Based on our experiments, we would like to

give the following advice. For distributions which are in the domain of attrac-

tion of the normal law, we recommend to use Fieller’s confidence set instead of

using any bootstrap method. Here, Fieller’s set works fine even for small sample

size and asymmetric distributions. Hwang’s set achieves comparable results in

terms of absolute deviation, but as opposed to Fieller’s sets its deviations tend

to be to the liberal side, which should be avoided in our opinion. For asymmet-

ric heavy-tailed distributions we recommend to use our Geometric(equal-tailed,

subsampling) method. This method can be seen as a natural generalization of

the geometric interpretation of the Fieller method to a bootstrap scenario. Even

though it does not work perfect, its coverage outperforms Fieller’s and Hwang’s

methods by a large margin, and the number of bounded confidence sets is often
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higher than for Fieller or Hwang. The performance of the geometric method of

course depends on the performance of the bootstrap method used for the one-

dimensional distributions. If one is able to improve the bootstrap intervals for

the mean of those distributions, one is very likely to further improve the coverage

of the geometric confidence sets for the ratio.
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